亚洲免费在线-亚洲免费在线播放-亚洲免费在线观看-亚洲免费在线观看视频-亚洲免费在线看-亚洲免费在线视频

python

系統 2034 0

MinMaxScaler.fit_transform()

            
              Init signature: MinMaxScaler(feature_range=(0, 1), copy=True)
Docstring:     
Transforms features by scaling each feature to a given range.

This estimator scales and translates each feature individually such
that it is in the given range on the training set, e.g. between
zero and one.

The transformation is given by::

    X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
    X_scaled = X_std * (max - min) + min

where min, max = feature_range.

The transformation is calculated as::

    X_scaled = scale * X + min - X.min(axis=0) * scale
    where scale = (max - min) / (X.max(axis=0) - X.min(axis=0))

This transformation is often used as an alternative to zero mean,
unit variance scaling.

Read more in the :ref:`User Guide 
              
                `.

Parameters
----------
feature_range : tuple (min, max), default=(0, 1)
    Desired range of transformed data.

copy : boolean, optional, default True
    Set to False to perform inplace row normalization and avoid a
    copy (if the input is already a numpy array).

Attributes
----------
min_ : ndarray, shape (n_features,)
    Per feature adjustment for minimum. Equivalent to
    ``min - X.min(axis=0) * self.scale_``

scale_ : ndarray, shape (n_features,)
    Per feature relative scaling of the data. Equivalent to
    ``(max - min) / (X.max(axis=0) - X.min(axis=0))``

    .. versionadded:: 0.17
       *scale_* attribute.

data_min_ : ndarray, shape (n_features,)
    Per feature minimum seen in the data

    .. versionadded:: 0.17
       *data_min_*

data_max_ : ndarray, shape (n_features,)
    Per feature maximum seen in the data

    .. versionadded:: 0.17
       *data_max_*

data_range_ : ndarray, shape (n_features,)
    Per feature range ``(data_max_ - data_min_)`` seen in the data

    .. versionadded:: 0.17
       *data_range_*

Examples
--------
>>> from sklearn.preprocessing import MinMaxScaler
>>> data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
>>> scaler = MinMaxScaler()
>>> print(scaler.fit(data))
MinMaxScaler(copy=True, feature_range=(0, 1))
>>> print(scaler.data_max_)
[ 1. 18.]
>>> print(scaler.transform(data))
[[0.   0.  ]
 [0.25 0.25]
 [0.5  0.5 ]
 [1.   1.  ]]
>>> print(scaler.transform([[2, 2]]))
[[1.5 0. ]]

See also
--------
minmax_scale: Equivalent function without the estimator API.

Notes
-----
NaNs are treated as missing values: disregarded in fit, and maintained in
transform.

For a comparison of the different scalers, transformers, and normalizers,
see :ref:`examples/preprocessing/plot_all_scaling.py

                
                  `.
File:           c:\users\huawei\appdata\local\programs\python\python36\lib\site-packages\sklearn\preprocessing\data.py
Type:           type
Subclasses:     

                
              
            
          

參考文章: 有關StandardScaler的transform和fit_transform方法
https://www.jianshu.com/p/2a635d9e894d


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 亚洲图欧美日韩色综合图 | 国产视频a | 伊人a.v在线 | 久久机热一这里只精品 | a拍拍男女免费看全片 | 91在线免费播放 | 男人懂的网站 | 福利一区视频 | 999久久 | 久久r精品 | 国产成人久久精品 | 久久精品国1国二国三在 | 欧美综合视频在线观看 | 99爱在线视频这里只有精品 | 一区二区三区四区国产 | 爱爱网站免费 | 欧美成人一区二区三区在线视频 | 亚洲欧美在线看 | 在线观看视频中文字幕 | 久久久久久亚洲精品不卡 | 韩国亚洲伊人久久综合影院 | 97精品视频在线观看 | 精品中文字幕不卡在线视频 | 精品国产一区二区三区四 | 在线观看www.| 久久精品国产亚洲欧美 | 99re久久在热线播放最新地址 | 日韩一区国产二区欧美三 | 欧美性天天影院 | 色综合综合色综合色综合 | 99九九精品 | 国产色影院| 日日摸夜夜添夜夜添影院视频 | 一级毛片黄色片 | 香蕉视频免费在线 | 国内精品91久久久久 | 未成人做爰视频www 我爱52avαv永久网站 | 久久国产精品自在自线 | 神马毛片| 成人免费牛牛在线视频 | 久久亚洲网站 |