亚洲免费在线-亚洲免费在线播放-亚洲免费在线观看-亚洲免费在线观看视频-亚洲免费在线看-亚洲免费在线视频

python

系統 1753 0

sklearn.preprocessing.RobustScaler:

            
              Init signature:
RobustScaler(
    with_centering=True,
    with_scaling=True,
    quantile_range=(25.0, 75.0),
    copy=True,
)
Docstring:     
Scale features using statistics that are robust to outliers.

This Scaler removes the median and scales the data according to
the quantile range (defaults to IQR: Interquartile Range).
The IQR is the range between the 1st quartile (25th quantile)
and the 3rd quartile (75th quantile).

Centering and scaling happen independently on each feature by
computing the relevant statistics on the samples in the training
set. Median and interquartile range are then stored to be used on
later data using the ``transform`` method.

Standardization of a dataset is a common requirement for many
machine learning estimators. Typically this is done by removing the mean
and scaling to unit variance. However, outliers can often influence the
sample mean / variance in a negative way. In such cases, the median and
the interquartile range often give better results.

.. versionadded:: 0.17

Read more in the :ref:`User Guide 
              
                `.

Parameters
----------
with_centering : boolean, True by default
    If True, center the data before scaling.
    This will cause ``transform`` to raise an exception when attempted on
    sparse matrices, because centering them entails building a dense
    matrix which in common use cases is likely to be too large to fit in
    memory.

with_scaling : boolean, True by default
    If True, scale the data to interquartile range.

quantile_range : tuple (q_min, q_max), 0.0 < q_min < q_max < 100.0
    Default: (25.0, 75.0) = (1st quantile, 3rd quantile) = IQR
    Quantile range used to calculate ``scale_``.

    .. versionadded:: 0.18

copy : boolean, optional, default is True
    If False, try to avoid a copy and do inplace scaling instead.
    This is not guaranteed to always work inplace; e.g. if the data is
    not a NumPy array or scipy.sparse CSR matrix, a copy may still be
    returned.

Attributes
----------
center_ : array of floats
    The median value for each feature in the training set.

scale_ : array of floats
    The (scaled) interquartile range for each feature in the training set.

    .. versionadded:: 0.17
       *scale_* attribute.

Examples
--------
>>> from sklearn.preprocessing import RobustScaler
>>> X = [[ 1., -2.,  2.],
...      [ -2.,  1.,  3.],
...      [ 4.,  1., -2.]]
>>> transformer = RobustScaler().fit(X)
>>> transformer  # doctest: +NORMALIZE_WHITESPACE
RobustScaler(copy=True, quantile_range=(25.0, 75.0), with_centering=True,
       with_scaling=True)
>>> transformer.transform(X)
array([[ 0. , -2. ,  0. ],
       [-1. ,  0. ,  0.4],
       [ 1. ,  0. , -1.6]])

See also
--------
robust_scale: Equivalent function without the estimator API.

:class:`sklearn.decomposition.PCA`
    Further removes the linear correlation across features with
    'whiten=True'.

Notes
-----
For a comparison of the different scalers, transformers, and normalizers,
see :ref:`examples/preprocessing/plot_all_scaling.py

                
                  `.

https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Interquartile_range
File:           c:\users\huawei\appdata\local\programs\python\python36\lib\site-packages\sklearn\preprocessing\data.py
Type:           type
Subclasses:     

                
              
            
          

更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 欧美成人看片黄a免费 | 国产精自产拍久久久久久 | 日韩一区二区超清视频 | 久久在线影院 | 亚洲另类伦春色综合妖色成人网 | 91九色首页 | 欧美精品免费在线观看 | 91视频最新地址 | 成人欧美日韩 | 日本精品久久久久久久 | 成人免费黄色小视频 | 天天爱天天干天天 | 日韩精品123 | 夜夜狠狠狠狠 | 亚洲精品69 | 在线亚洲欧洲福利视频 | 亚洲久本草在线中文字幕 | 国产品精人成福利视频 | 国产a毛片清高视频 | 日本欧洲95视频 | 毛片毛片毛片毛片 | 全免费a级毛片免费看视频免 | 九九精品国产兔费观看久久 | 超级乱淫视频aⅴ播放视频 超级乱淫视频播放日韩 | 久久久精品日本一区二区三区 | 日日夜夜天天人人 | 国产成人午夜性a一级毛片 国产成人午夜性视频影院 国产成人系列 | 一级一级一级毛片免费毛片 | 日本久久精品免视看国产成人 | 亚洲欧美日韩在线中文一 | 亚洲成人在线视频播放 | 91青草久久久久久清纯 | 亚洲视频日韩 | 特级毛片在线大全免费播放 | 久艹在线播放 | 777777农村一级毛片 | 99久久99久久精品免费看子伦 | 在线观看麻豆国产精品 | 特黄特黄aaaa级毛片免费看 | 精品九九久久 | 曰韩一级片 |