亚洲免费在线-亚洲免费在线播放-亚洲免费在线观看-亚洲免费在线观看视频-亚洲免费在线看-亚洲免费在线视频

python 缺失值處理的方法(Imputation)

系統 1758 0

一、缺失值的處理方法

由于各種各樣的原因,真實世界中的許多數據集都包含缺失數據,這些數據經常被編碼成空格、nans或者是其他的占位符。但是這樣的數據集并不能被scikit - learn算法兼容,因為大多數的學習算法都會默認數組中的元素都是數值,因此素偶有的元素都有自己的代表意義。

使用不完整的數據集的一個基本策略就是舍棄掉整行或者整列包含缺失值的數值,但是這樣處理會浪費大量有價值的數據。下面是處理缺失值的常用方法:

1.忽略元組

當缺少類別標簽時通常這樣做(假定挖掘任務涉及分類時),除非元組有多個屬性缺失值,否則該方法不是很有效。當每個屬性缺少值的百分比變化很大時,它的性能特別差。

2.人工填寫缺失值

一般該方法很費時,并且當數據集很大,缺少很多值時,該方法可能行不通。

3.使用一個全局常量填充缺失值

將缺失的屬性值用同一個常數(如“Unknown”或 負無窮)替換。如果缺失值都用“unknown”替換,則挖掘程序可能會認為它們形成一個有趣的概念,因為它們都具有相同的值“unknown”。因此,雖然該方法很簡單,但是它十分不可靠。

4.使用與給定元組屬同一類的所有樣本的屬性均值

例如:將顧客按照credit_risk分類,則使用具有相同信用度的給定元組的顧客的平均收入替換income中的缺失值。

5.使用最可能的值填充缺失值

可以用回歸、使用貝葉斯形式化的基于推理的工具或決策樹歸納確定。例如,利用數據集中其他顧客的屬性,可以構造一顆決策樹來預測income的缺失值。

注意:缺失值并不總是意味著數據的錯誤!!!!!!!

二、缺失值處理的代碼實現

class:`Imputer`類提供了缺失數值處理的基本策略,比如使用缺失數值所在行或列的均值、中位數、眾數來替代缺失值。該類也兼容不同的缺失值編碼。

1、使用均值填充缺失值

            
import numpy as np

from sklearn.preprocessing import Imputer

imp = Imputer(missing_values='NaN', strategy='mean', axis=0)

import numpy as np

from sklearn.preprocessing import Imputer
 
###1.使用均值填充缺失值
imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
imp.fit([[1, 2], [np.nan, 3], [7, 6]])


X = [[np.nan, 2], [6, np.nan], [7, 6]]
print(imp.transform(X)) 
[[4.     2.    ]
 [6.     3.66666667]
 [7.     6.    ]]


          

2、Imputer 類也支持稀疏矩陣:

            
import scipy.sparse as sp
 
X = sp.csc_matrix([[1, 2], [0, 3], [7, 6]])
 
imp = Imputer(missing_values=0, strategy='mean', axis=0)
 
imp.fit(X)
 
 
X_test = sp.csc_matrix([[0, 2], [6, 0], [7, 6]])
 
print(imp.transform(X_test))

#注意,在這里,缺失數據被編碼為0, 這種方式用在當缺失數據比觀察數據更多的情況時是非常合適的。 

          

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 国产成人久久精品麻豆二区 | 久久综合九九 | 国内精品久久久久久久星辰影视 | 亚洲一区二区三区国产精品 | 久久这里精品青草免费 | 99视频在线观看高清 | 天堂成人精品视频在线观 | 欧美综合成人网 | 香蕉在线影院 | 中文字幕在线观看2023 | oldwoman中国老女人tv | 成年女人免费看片 | 深夜视频在线免费观看 | 日本一区中文字幕 | 久久久久青草 | 国产一区二区三区精品久久呦 | 亚洲欧美国产18 | 纯欧美一级毛片免费 | 九九视频精品在线 | 噜噜色噜噜色 | 国产欧美一区二区精品久久久 | 久久久久草 | 久久精品国产2020观看福利色 | 青草香蕉精品视频在线观看 | 4hu四虎最新免费地址 | 亚洲国内 | 黄片毛片免费在线观看 | 在线你懂得 | 久久国产免费观看 | 香蕉国产人午夜视频在线观看 | www.成人在线视频 | 久草免费在线观看视频 | 91在线手机精品免费观看 | 日本中文字幕在线观看 | 亚洲黄色网址大全 | 日本一区网站 | 久久亚洲国产的中文 | 久草视频精品 | 天天干夜夜夜 | 997在线观看视频国产 | 国产欧美在线视频免费 |