亚洲免费在线-亚洲免费在线播放-亚洲免费在线观看-亚洲免费在线观看视频-亚洲免费在线看-亚洲免费在线视频

Python3.0 實(shí)現(xiàn)決策樹算法的流程

系統(tǒng) 2378 0

決策樹的一般流程

檢測數(shù)據(jù)集中的每個(gè)子項(xiàng)是否屬于同一個(gè)分類

            
if so return 類標(biāo)簽
Else
          

? 尋找劃分?jǐn)?shù)據(jù)集的最好特征

??? 劃分?jǐn)?shù)據(jù)集

?? 創(chuàng)建分支 節(jié)點(diǎn)

            
from math import log
import operator
#生成樣本數(shù)據(jù)集
def createDataSet():
  dataSet = [[1,1,'yes'],
        [1,1,'yes'],
        [1,0,'no'],
        [0,1,'no'],
        [0,1,'no']]
  labels = ['no surfacing','flipper']
  return dataSet,labels
# 計(jì)算香農(nóng)熵 香農(nóng) 大神必須要膜拜啊,信息界的根目錄人物啊
# no surfacing 指的是 不浮出水面能否生存 1 標(biāo)識(shí) 是 0 指的是否
# flipper 指的是是否有腳
# yes no指的是否是魚類
def calcShannonEnt(dataSet):
  numEntries = len(dataSet) # 用上面的createDataSet dataSet 這個(gè)值就是5
  #定義標(biāo)簽字典
  labelCounts = {}
  # 為所有可能的分類創(chuàng)建字典
  for featVec in dataSet:
    currentLabel = featVec[-1] #這個(gè)-1指的是去取最后一個(gè)維度 對應(yīng)數(shù)據(jù)dataSet 這里取的是yes和no
    if currentLabel not in labelCounts.keys():
      # 如果當(dāng)前分類標(biāo)簽不在 標(biāo)簽字典中
      labelCounts[currentLabel] = 0
    # 其他情況 分類標(biāo)簽分類加1
    labelCounts[currentLabel] += 1
  #定義香農(nóng)熵 以2為底數(shù)求對數(shù)
  shannonEnt = 0.0
  for key in labelCounts:
    #計(jì)算 yes 或者No 出現(xiàn)的概率
    pro = float(labelCounts[key])/numEntries
    # 計(jì)算香農(nóng)熵
    shannonEnt -= pro*log(pro,2)
  return shannonEnt
#dataSet是待劃分的數(shù)據(jù)集, 劃分?jǐn)?shù)據(jù)集的特征 axis 特征的返回值value
#最后是創(chuàng)建了一個(gè)新的列表對象
def splitDataSet(dataSet, axis , value):
  # 創(chuàng)建新list對象
  retDataSet = []
  for featVec in dataSet:
    if featVec[axis] == value:
      reducedFeatVec = featVec[:axis]
      reducedFeatVec.extend(featVec[axis+1:])
      retDataSet.append(reducedFeatVec)
  return retDataSet
# 選擇最好的特征值進(jìn)行數(shù)據(jù)集劃分
def chooseBestFeatureToSplit(dataSet):
  # len(dataSet[0])是計(jì)算這一行有多少列,即有多少個(gè)特征值
  numFeatures = len(dataSet[0])-1 # -1 是最后一個(gè)特征值就不要記錄在內(nèi)了,算baseEntrop的時(shí)候已經(jīng)算了最后一個(gè)特征值yes no
  baseEntropy = calcShannonEnt(dataSet)
  bestInfoGain = 0.0
  bestFeature = -1
  for i in range(numFeatures):
    #創(chuàng)建唯一的分類標(biāo)簽列表 也就是說提取dataSet每一行第i個(gè)值 就提取dat
    featList = [example[i] for example in dataSet]
    # 取出有幾種特征值
    uniqueVals = set(featList)
    newEntropy = 0.0
    for value in uniqueVals:
      #創(chuàng)建特征值的子數(shù)據(jù)集
      subDataSet = splitDataSet(dataSet,i, value)
      #計(jì)算該特征值數(shù)據(jù)對總數(shù)在數(shù)據(jù)對總數(shù)出現(xiàn)的概率
      pro = len(subDataSet)/float(len(dataSet))
      #計(jì)算分割出來的子集香農(nóng)熵
      newEntropy += pro*calcShannonEnt(subDataSet)
    #計(jì)算信息增益 得到最好的特征值 這個(gè)理論是這樣的g(D,A) = H(D)-H(D/A)
    infoGain = baseEntropy-newEntropy
    #取出最大的信息增益,此時(shí)特征值最大
    if(infoGain >bestInfoGain):
      bestInfoGain = infoGain
      bestFeature = i
  return bestFeature
'''
#構(gòu)建決策樹是根據(jù)特征值的消耗來計(jì)算的,如果后面的特征值已經(jīng)全部用完了
但是還沒有分出結(jié)果,這個(gè)時(shí)候就需要使用多數(shù)表決方式計(jì)算節(jié)點(diǎn)分類
最后返回最大的分類
'''
def majorityCnt(classList):
  # 分類的字典
  classCount = {}
  for vote in range(classList):
    #如果不在 分類字典中
    if vote not in classCount.keys(): classCount[vote] = 0
    classCount[vote] += 1
    # 根據(jù)出現(xiàn)的次數(shù)大到小排序
    sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
  return sortedClassCount[0][0]
#創(chuàng)建決策樹
def createTree(dataSet, labels):
  # 獲取數(shù)據(jù)樣本每組最后一組的特征值 這里是yes,no
  classList = [example[-1] for example in dataSet]
  # 如果說這個(gè)classList 全部都是 yes 或者全部是no 那肯定子返回yes 或者no
  if(classList.count(classList[0]) == len(classList)):
    return classList[0]
  #如果遍歷完所有的特征返回出現(xiàn)次數(shù)最多的
  #是用消耗特征值的方式進(jìn)行構(gòu)造決策樹的,每次會(huì)消掉一個(gè)特征值
  if len(dataSet[0]) == 1:
    return majorityCnt(classList)
  #選擇最好的特征值
  bestFeat = chooseBestFeatureToSplit(dataSet)
  bestFeatLabel = labels[bestFeat]
  myTree = {bestFeatLabel:{}}
  # 刪除labels中的一特征值
  del(labels[bestFeat])
  #找到特征值那一列
  featValues = [example[bestFeat] for example in dataSet]
  uniqueVals = set(featValues)
  for value in uniqueVals:
    # labels列表的賦值
    subLabels = labels[:]
    myTree[bestFeatLabel][value]=createTree(splitDataSet(dataSet,bestFeat,value),subLabels)
  return myTree
dataSet,lables = createDataSet()
shannonEnt= calcShannonEnt(dataSet)
my = createTree(dataSet,lables)
print(my)
          

總結(jié)

以上所述是小編給大家介紹的Python3.0 實(shí)現(xiàn)決策樹算法的流程,希望對大家有所幫助,如果大家有任何疑問請給我留言,小編會(huì)及時(shí)回復(fù)大家的。在此也非常感謝大家對腳本之家網(wǎng)站的支持!
如果你覺得本文對你有幫助,歡迎轉(zhuǎn)載,煩請注明出處,謝謝!


更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯(lián)系: 360901061

您的支持是博主寫作最大的動(dòng)力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點(diǎn)擊下面給點(diǎn)支持吧,站長非常感激您!手機(jī)微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點(diǎn)擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動(dòng)力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會(huì)非常 感謝您的哦!!!

發(fā)表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 欧美开嫩苞实拍视频在线观看 | 韩国色三级伦不卡高清在线观看 | 一级特黄a免费大片 | 亚洲精品一区二区四季 | 亚洲国产欧美在线人成 | 国产精品国产亚洲精品不卡 | 成人免费视频在线 | 日韩一区二区三区四区 | 久久爱www人成| 亚洲免费福利视频 | 中国一级特黄特级毛片 | 天天综合网在线 | 成人欧美精品一区二区不卡 | 久久午夜夜伦伦鲁鲁片 | 麻豆国产原创 | 亚洲视频一区二区三区四区 | 中文字幕日韩一区 | 中文字幕 亚洲精品 第1页 | 亚洲欧美综合乱码精品成人网 | 色中文字幕| 国产成人无精品久久久 | 国产日韩欧美综合一区 | 视频一区在线免费观看 | 国产精品福利社 | 中文字幕免费在线看线人动作大片 | 亚洲精品色综合久久 | 久久久久久久久久免免费精品 | 中文字幕日韩精品麻豆系列 | 精品一区精品二区 | 亚洲国产成人99精品激情在线 | 97看片吧| 看美女毛片 | 精品成人毛片一区二区视 | 97久久国语露脸精品对白 | 九月激情网 | 日日噜噜夜夜狠狠tv视频免费 | 国产欧美综合一区二区 | 日本一区二区三区久久 | 在线视频这里只有精品 | 欧美日韩一区二区高清视 | 免费一级毛片无毒不卡 |