分治算法
?
在計算機科學中,分治法是一種很重要的算法。字面上的解釋是“分而治之”,就是把一個復雜的問題分成兩個或更多的相同或相似的子問題,再把子問題分成更小的子問題……直到最后子問題可以簡單的直接求解,原問題的解即子問題的解的合并。這個技巧是很多高效算法的基礎,如排序算法(快速排序,歸并排序),傅立葉變換(快速傅立葉變換)……
??? 任何一個可以用計算機求解的問題所需的計算時間都與其規模有關。問題的規模越小,越容易直接求解,解題所需的計算時間也越少。例如,對于n個元素的排序問題,當n=1時,不需任何計算。n=2時,只要作一次比較即可排好序。n=3時只要作3次比較即可,…。而當n較大時,問題就不那么容易處理了。要想直接解決一個規模較大的問題,有時是相當困難的。
??? 分治法的設計思想是,將一個難以直接解決的大問題,分割成一些規模較小的相同問題,以便各個擊破,分而治之。
??? 分治策略是:對于一個規模為n的問題,若該問題可以容易地解決(比如說規模n較小)則直接解決,否則將其分解為k個規模較小的子問題,這些子問題互相獨立且與原問題形式相同,遞歸地解這些子問題,然后將各子問題的解合并得到原問題的解。這種算法設計策略叫做分治法。
??? 如果原問題可分割成k個子問題,1<k≤n ,且這些子問題都可解并可利用這些子問題的解求出原問題的解,那么這種分治法就是可行的。由分治法產生的子問題往往是原問題的較小模式,這就為使用遞歸技術提供了方便。在這種情況下,反復應用分治手段,可以使子問題與原問題類型一致而其規模卻不斷縮小,最終使子問題縮小到很容易直接求出其解。這自然導致遞歸過程的產生。分治與遞歸像一對孿生兄弟,經常同時應用在算法設計之中,并由此產生許多高效算法。
??? 分治法所能解決的問題一般具有以下幾個特征:
??? 1) 該問題的規模縮小到一定的程度就可以容易地解決
??? 2) 該問題可以分解為若干個規模較小的相同問題,即該問題具有最優子結構性質。
??? 3) 利用該問題分解出的子問題的解可以合并為該問題的解;
??? 4) 該問題所分解出的各個子問題是相互獨立的,即子問題之間不包含公共的子子問題。
??? 上述的第一條特征是絕大多數問題都可以滿足的,因為問題的計算復雜性一般是隨著問題規模的增加而增加;第二條特征是應用分治法的前提它也是大多數問題可以滿足的,此特征反映了遞歸思想的應用;第三條特征是關鍵,能否利用分治法完全取決于問題是否具有第三條特征,如果具備了第一條和第二條特征,而不具備第三條特征,則可以考慮用貪心法或動態規劃法。第四條特征涉及到分治法的效率,如果各子問題是不獨立的則分治法要做許多不必要的工作,重復地解公共的子問題,此時雖然可用分治法,但一般用動態規劃法較好。
??? 分治法的基本步驟
??? 分治法在每一層遞歸上都有三個步驟:
??? 分解:將原問題分解為若干個規模較小,相互獨立,與原問題形式相同的子問題;
??? 解決:若子問題規模較小而容易被解決則直接解,否則遞歸地解各個子問題
??? 合并:將各個子問題的解合并為原問題的解。
??? 它的一般的算法設計模式如下:
??? Divide-and-Conquer(P)
??? 1. if |P|≤n0
??? 2. then return(ADHOC(P))
??? 3. 將P分解為較小的子問題 P1 ,P2 ,...,Pk
??? 4. for i←1 to k
??? 5. do yi ← Divide-and-Conquer(Pi) △ 遞歸解決Pi
??? 6. T ← MERGE(y1,y2,...,yk) △ 合并子問題
??? 7. return(T)
??? 其中|P|表示問題P的規模;n0為一閾值,表示當問題P的規模不超過n0時,問題已容易直接解出,不必再繼續分解。ADHOC(P)是該分治法中的基本子算法,用于直接解小規模的問題P。因此,當P的規模不超過n0時直接用算法ADHOC(P)求解。算法MERGE(y1,y2,...,yk)是該分治法中的合并子算法,用于將P的子問題P1 ,P2 ,...,Pk的相應的解y1,y2,...,yk合并為P的解。
??? 分治法的復雜性分析
??? 一個分治法將規模為n的問題分成k個規模為n/m的子問題去解。設分解閥值n0=1,且adhoc解規模為1的問題耗費1個單位時間。再設將原問題分解為k個子問題以及用merge將k個子問題的解合并為原問題的解需用f(n)個單位時間。用T(n)表示該分治法解規模為|P|=n的問題所需的計算時間,則有:
??? 通過迭代法求得方程的解:
??? 遞歸方程及其解只給出n等于m的方冪時T(n)的值,但是如果認為T(n)足夠平滑,那么由n等于m的方冪時T(n)的值可以估計T(n)的增長速度。通常假定T(n)是單調上升的,從而當mi≤n<mi+1時,T(mi)≤T(n)<T(mi+1)。
?
來自:http://c.chinaitlab.com/200909/793033.html
?
更多文章、技術交流、商務合作、聯系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號聯系: 360901061
您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對您有幫助就好】元
